
Incorporating Voice Instructions in Model-Based
Reinforcement Learning for Self-Driving Cars

Mingze Wang, Ziyang Zhang, Grace Hui Yang
InfoSense, Department of Computer Science

Georgetown University, United States
{mw1222,zz249,grace.yang}@georgetown.edu

Abstract

This paper presents a novel approach that supports natural language voice in-
structions to guide deep reinforcement learning (DRL) algorithms when training
self-driving cars. DRL methods are popular approaches for autonomous vehicle
(AV) agents. However, most existing methods are sample- and time-inefficient
and lack a natural way to communicate with a human expert. In this paper, how
new human drivers learn from human coaches motivates us to study new ways of
human-in-the-loop learning and a more natural and approachable training interface.
We propose incorporating natural language voice instructions (NLI) in model-based
deep reinforcement learning for self-driving cars. We evaluate the proposed method
together with a few state-of-the-art DRL methods in the CARLA simulator. The
results show that natural language instructions can help ease the training process
and significantly boost the agents’ learning speed.

1 Introduction

Research in self-driving cars, also known as autonomous vehicles (AV), has made rapid progress due
to significant deep learning advancements. Deep reinforcement learning (DRL) methods are popular
approaches for self-driving cars. A DRL agent learns by interacting with the driving environment
and gradually forms a good policy that satisfies constraints in the environment. An effective policy
can take up many trial-and-error steps. In each learning episode, the agent improves its policy
slightly towards an optimization objective, which in most cases is to maximize the long-term expected
cumulative rewards [29]. While these algorithms show promising results, most of them are sample
inefficient and require substantial training episodes. Model-based reinforcement learning has been
proposed to improve sample efficiency by learning an environmental model and using the model to
better plan the actions.

However, learning the policy and learning the environmental model are still time- and sample-
consuming. When watching an agent’s learning curve develop, it is not uncommon for an engineer to
think and almost verbalize to the agent that –“Hey, that move is stupid”, “Good job!” or “Just go
there.” When seeing good moves, she might want to praise the agent; she might like to remind when
she sees terrible actions. However, such a “direct”, natural, and quick communication channel does
not exist.

On the other hand, we notice that human novice drivers can learn driving with much less training.
Human drivers have a human coach sit beside them, giving instructions and evaluative feedback. The
student driver does the driving during a lesson, and the coach verbally delivers commands, praises,
and scolds. Sometimes, the coach explains traffic rules and driving conventions, paired with stories
and reasoning. Their way of communication is through natural language (NL) utterances. The student
may not speak much when focusing on driving and learning; the coach does most of the talking.
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Figure 1: Model-Based RL with Voice In-
structions.

Figure 2: Example
town in CARLA

Figure 3: Front camera inputs

Compared to an artificial learner, only a small amount of instructions from the coach is needed by the
human student, and she learns pretty efficiently. On average, a new human driver takes three to five
behind-the-wheel classes, each of which lasts around two hours, to pass the road test for a class-D
license.1

This motivates us to work on a new way to communicate and train autonomous car agents. In
this paper, we propose to give natural language voice instructions to train AV agents. Compared
to keyboard strokes or other control commands, natural language is very convenient, natural, and
fast in communicating. Recent progress in automated speech recognition (ASR), natural language
processing (NLP), and personal assistants encourages people to interact with the agents with their
voices. Our goal is to provide the agents with the most natural and direct interference and improve
and accelerate their learning.

The voice training interface that we present can potentially facilitate two scenarios. First, it can help
machine learning practitioners interact with their algorithms more naturally, directly impacting the
agent’s learning process. Second, the voice inputs allow non-technical end-users to continue the
training after purchasing the agent home. It is like online learning after they have owned the product
for personal use.

Particularly, we propose incorporating voice instructions in model-based deep reinforcement learning
to train self-driving cars. First, we collect voice instructions offline and build a training dataset and
a taxonomy of NL instructions. Our data analysis shows that most instructions are indeed about
actions and rewards. Second, we create a human-in-the-loop framework that incorporates live voice
instructions. Two places in a model-based RL algorithm can include natural language instructions.
The first is policy learning, where the natural language instructions can improve or overwrite the
agent’s actions. The second is the environmental reward function. Ideally, a reward function for a
self-driving car would handle multiple objectives, such as safety, conforming to traffic rules, speed
under control, and whether passengers are feeling comfortable. It is often pre-set before the learning
starts. Allowing human interference during training can diversify the reward function from its pre-set
formulation and better suit real-world situations.

We evaluate our method in the CARLA simulator [9, 6, 27]. It is an open-source simulator that
supports flexible sensor suites, environmental conditions, complete control of static and dynamic
actors, and map generation. However, we realize, compared to actual road tests, the simulator’s image
resolution is lower and has fewer traffic signs (it only has traffic lights, stop signs, and speed limits).
The simulated town is also small, and other vehicles are assumed to drive ideally. No aggressive
drivers are present. Regardless of the idealization, we think CARLA is sufficient and use it to test our
idea.

Although our method is general and can be used in combination with various learning methods for
self-driving cars, we investigate the Dyna algorithm [29] with PPO in this paper[28]. Experiments
show that using voice instructions to interfere with self-driving cars’ learning can significantly
improve the learning efficiency and make the agents converge much faster to a good policy.

2 Related Work

Research in Autonomous Vehicles. Research on autonomous driving agents can be categorized
as modular models and end-to-end models [11]. Traditionally, self-driving cars use a pipeline of
perception-planning-action modular models to compute their driving decisions [15]. More recently,

1https://dmv.dc.gov/page/mandatory-driver-education.
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end-to-end learning methods, which directly map from raw sensor inputs to control commands [11],
have become popular for autonomous driving. Many are deep reinforcement learning (DRL) methods
that directly optimize the whole system’s effectiveness from raw inputs and environmental rewards.
For instance, [14] asynchronous actor-critic agents (A3C) [24] were used to map image inputs from
a forward-facing camera to control a car agent in a game simulator. The algorithm uses millions
of interactions with the environment to converge to a good racing policy. [15] employed deep
deterministic policy gradient [19] for their self-driving car agents. Their agent learns to follow a
250m rural lane within only half an hour of training. [31] applied proximal policy optimization (PPO)
[28] to a lane following task in the simulator CARLA, with an average of eight hours of training. All
three pieces of work can solve the simple lane following problem, where the car drives on a route
with no intersections, no traffic lights, and no other vehicles. However, even with such a simple task
setting, the training process is still largely inefficient, especially at the beginning of the training.

Simulated training. It can be an extremely high cost to train self-driving cars on real roads. There-
fore, many algorithms use simulators to train the agents. CARLA [9] is a popular simulator used in
recent research [6, 27] for autonomous driving research. It can support the development, training,
and validation of autonomous driving systems. The simulator provides a flexible specification of
sensor suites, environmental conditions, full control of all static and dynamic actors, map generation,
and many other functionalities. As a simulator, CARLA’s limitations are mostly its simplification to
real-world situations. For example, it has limited types of traffic signs, low texture resolution, and
small towns. But for the essential tasks of a self-driving car, such as following the traffic lanes and
watching out the pedestrians, CARLA is sufficient. This work uses the “Town02” environment with
random weather settings and a limited refresh rate of 10 per second.

Human-in-the-loop learning. Our work belongs to human-in-the-loop learning (HILL), a recent
machine learning paradigm that has generated significant practical and theoretical interests [20]. We
group HILL research into the following categories by the usages of the human interventions and by
the types of human feedback.

Based on where an RL algorithm uses human intervention, we can classify the works into direct policy
learning, reward learning, and policy and reward learning. The first and most common usage of human
intervention is providing evaluative feedback directly to the action generated by a policy [4, 21].
These methods are simple and effective. They help the policy learning quickly converge. The second
type is to incorporate human feedback in reward learning, aka inverse reinforcement learning. The
idea is to use human trainers to control the robots or agents to generate a demonstration [3, 18] and
the inverse reinforcement learning can benefit from the generated demonstrations to learn the reward
functions [1].

Various types of human interventions have been explored in HILL. For example, the simplest
one is the hardware delivered feedback, mainly including mouse clicks, keyboard keys, and other
sensors [16, 21]. Although this method is precise, it needs reaction time for human trainers to
express the feedback by using a keyboard or mouse. Instead, we can use mores natural ways to
provide feedback such as facial feedback [2, 5], natural language feedback [17, 22] and gesture
feedback [7, 32]. VNLA [25] use natural language in a navigation task. If the agent is stuck
somewhere or gets lost, the human trainers give the agent detailed instructions on reaching the next
sub-goal. The instructions contain the direction and the features of the sub-goal, which is easy for
the agent to detect and reach. However, the natural language feedback in VNLA is not in real-time.
For AV tasks, real-time instructions are more effective than non-real-time ones. Our approach uses
real-time instructions to coach the agents on driving and achieve higher AV tasks.

The most similar piece of work to ours is perhaps the Deep COACH (COnvergent Actor-Critic by
Humans) method [4]. Deep COACH works with a human trainer as part of the deep actor-critic
reinforcement learning algorithm. It considers human feedback as a more accurate evaluation of the
agent’s choice than a reward function. The human trainer acts as the critic, and the objective policy
acts as the actor. Thus the relationship between human trainers and the objective policy is suitable
for the actor-critic algorithm. The types of human interventions used in Deep COACH are simple
positive or negative values. However, an actual human trainer can indeed provide more informative
information to the agent beyond simple positive or negative feedback. In this paper, we propose to
use natural language as the communication channel between the human trainer and the robotic car
agent, aiming to provide the agents with richer and more precise instructions that make full use of
human trainers.
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Table 1: Taxonomy of Voice Instructions.
Type Sub-type Example Implementation

Action Go Straight Just keep your car straight. steer = 0
Hold steering wheel steady.
That’s too much oscillation.

Turn Left To the left. steer = −0.2
Take left, take left, left.

Turn Right Take a right. steer = 0.2
Move, right.

Speed up You can probably speed up. throttle+ = 0.15
Go go, a bit faster.

Slow down oming up slow, slow down. throttle− = 0.15
You need to slow down.

Stop Stop sign. brake = 1
Stop!
There’s a stop sign so we have to stop.

Reward Great Cool! rh = 30
Yeah, you are doing well.

Good All right. It’s ok. rh = 10
Bad Oh, no. rh = −10

That’s that’s not good.
Terrible What are you doing? rh = −30

You can’t do that.
Mistake You blew another red light. rh = −30

You’re on the sidewalk.
Accident You ran into a wall. rh = −30

You blew a stop sign.

Reasoning Causal There’s a stop sign so we have to stop.
You’re approaching a yield. So you may want to look for cars.
No need to stop. You. Didn’t need to stop there. There’s no sign.

State Describe There’s a stop sign.
You’re at a red light.
Watch out the grass!

3 Constructing a Voice Instruction Taxonomy

Our research aims to give natural language voice instructions directly to self-driving car agents for
more effective and efficient training. The challenge of this project is to train the agent to understand
natural language coaching instructions. To serve this goal, we collected a training dataset and built
an NL instruction taxonomy from it. The dataset has been annotated and will be made available for
research use upon publication.

Collecting Natural Language Instructions. To build the dataset, we gather audio recordings from
machine learning practitioners for their voice instructions when they are watching the agents’ driving.
Our goal is to create a representative, natural, free-form voice instruction dataset.

The participants were instructed to imagine self-driving car coaches teaching a new driver (the
self-driving car) in a driving school. Their instructions to the agent should be natural conversations
instead of from a controlled vocabulary. For instance, the instructions can be direct commands,
praises, curses, or rules that they wish the agent to learn. The participants were encouraged to be
creative and talk freely, as long as the instructions fit the role of a driving coach. Six participants who
are familiar with machine learning and driving participated in the data collection. The participants’
names or user ids are fully anonymized and the data are password-protected and stored in a secure
place. The participants were also instructed to only talk in the context of teaching an agent to drive
and not to talk about personal, medical, or other sensitive information.

Four types of sample driving videos are provided based on their training levels: (1) “Non-trained” are
videos from a random self-driving car agent who receives no training at all. It can act quite weird and
full of crashes. (2) “Mid-trained” are videos from self-driving car agents whose learning curves are
not yet converged and only half-trained. They can follow the lane twisty. (3) “Trained” are the videos
from the self-driving car agents who have been trained by a model-free RL method and can follow
the lane correctly. (4) “Autopilot” are videos produced by the autopilot control in the simulator. It
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can be considered as the gold standard that an artificial agent can achieve. When watching the videos,
the participants were instructed to record their voice instructions using an audio recording device.
They were also asked to try their best to synchronize the voice to the video. In the end, we collected
20 audio clips.

Speech-to-Text Transcription. We used Google’s speech-to-text (STT) [10] to convert these audio
clips into text transcripts. The text transcripts are then segmented into utterances and aligned with
the videos. The utterances range from short phrase-like commands to long sentences. The content
includes direct commands such as “go straight”, positive recognition, expressions of surprises and
disappointment, and reasoning. These utterances may not be 100% grammatically correct. However,
they show us a representative group of expressions that a human coach would use to teach a car agent.

Note that the speech-to-text tool can also perform real-time speech recognition. Each time the
microphone receives an instruction, it sends it to the server of STT and returns the corresponding
text scripts quickly. We present our use of it for real-time transcription in later sections. In addition,
we are also aware that audios contain more information than their text transcripts. For instance,
intonations, volume level, exclamations, and signs would be important signals to express evaluative
feedback to the agents or infer the human’s real intention. However, we leave these to future work
and concentrate on textual analysis of the dataset.

Building Taxonomy of Instructions. According to the real-world driving experience, we analyze
and semi-automatically organize the voice instruction dataset into a taxonomy. Table 1 shows our
two-level taxonomy, examples and how to implement them into the learning algorithm.

The two most common types of instructions in the utterances that we collected are actions and rewards.
Actions mean the instructions tell the agent how to drive in the next step. In this type of instructions,
we have steer commands turn right, turn left and go straight and speed commands speed up, speed
down and stop. The reward-related instructions give evaluative feedback to the agent. Some of them
indicate severity of an issue, so we use them as different reward levels: great, good, bad and terrible.
Others directly mention the event type, for instance, mistake or accident.

4 Model-Based RL with Voice Instructions

This paper proposes incorporating natural language voice instructions in model-based reinforcement
learning to train self-driving car agents. Our goal is to support more natural and direct interference
from human engineers or end-users to the agents and improve and accelerate the agents’ learning.

Model-Based Deep RL. Similar to most reinforcement learning methods, model-based reinforcement
learning is built on top of the Markov Decision Process (MDP). It consists of a tuple 〈S,A,R,T〉 to
represent state, action, reward, and state transition function.

• State: s ∈ S, consisting two parts s = (i, v), i ∈ I, where I is the set of all possible images
captured from cameras, and v ∈ R+, the current car running speed. The camera image set I
can include front, side, and rearview. But in this work, we only use the front view, which is
adequate for most tasks in CARLA.

• Action: a ∈ A, consisting of steer asteer ∈ [−1, 1], throttle athrottle ∈ [0, 1] and brake
abrake ∈ [0, 1], represented by a vector of length three a = [asteer, athrottle, abrake]

T .

• Reward function R: part of the environmental model in a model-based RL algorithm and is
learned via model learning.

• Transition function T: also part of the environmental model and is learned via model
learning. However, it is not in the interest of this paper and we will skip it.

Model-based reinforcement learning has two concurrent learning components. One is similar to
model-free reinforcement learning, known as “policy learning” or “direct RL.” Policy learning’s goal
is to find the best policy π∗ directly via environmental rewards, where assuming the transition model
and the reward function are deterministic. Policy learning aims to maximize the objective function
J(π), which is the expected value of the cumulative future reward Eπ

[∑T
k=t γ

kR(sk, π(sk))
]
.

Model learning is the other learning component. In our work, we focus more on reward function
learning because the CARLA simulator decides the environmental state transition.
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Algorithm 1 Teaching AV Agents with Voice Instructions.
1: Input: training environment E; voice action ah, voice reward rh; number of trajectories each epoch N ;

replay buffer B; reward coefficients β, policy πθ with initial parameters θ
2: repeat
3: for t = 0 to N do
4: initialize done, traj, E
5: while not done do
6: Get current state s from E.
7: Sample action a from π̂n
8: if voice action ah 6= ∅ then
9: a = ah

10: end if
11: Get reward r and next state s′ after executing a
12: if voice reward rh 6= ∅ then
13: Update β for an earlier reward rprev with rh
14: for i = prev to t− 1 do
15: Update (s, a, r) at timestep i in traj based on β
16: end for
17: end if
18: Append (s, a, r) to traj
19: end while
20: B stores traj
21: end for
22: Update π̂n with (s, a, r) in buffer B
23: until Algorithm converges.

In this work, we propose incorporating voice instructions into both the model-based RL’s policy
learning and model learning. Next, we first present how we obtain and process the voice inputs in
real-time, followed by details of incorporating the processed instructions in policy learning and model
learning, respectively. The overall algorithm is presented in Algorithm 1.

Mapping Voice Instructions to Actions and Rewards. Our project aims to use human instructions
in real-time to teach a learning car agent. One option is to train an end-to-end neural network
classifier to map raw audio clips to our instruction categories (Table 1). However, this could be
impractical due to the live interaction constraint. We thus propose a two-stage process that first
performs speech-to-text transcription over the speech data and then classifies the textual utterances
into action- or reward-related commands that the agent can easily operate.

First, we use Google’s speech-to-text (STT) tool [10], which can convert audio into text with real-time
speech recognition. Each time the microphone receives voice instructions, it sends it to the server of
STT and returns the corresponding text quickly. This service enables us to process a human coach’s
live instructions like in a behind-the-wheel driving class. The accuracy of STT depends on many
factors, such as speech tones, accent, and microphone quality. The accuracy of STT reported by
Google Team is 93.1% (6.9% Word Error Rate) [26].

Second, we employ a BERT-based neural network text classifier [8] to classify each transcribed
utterance, i.e., a verbal sentence that the human trainer spoke, to one of the actions or reward sub-
types. BERT is a general-purpose and robust pre-trained language model widely used in natural
language processing (NLP) tasks. We mainly use BERT-Base’s model [30] to translate the sentences
into vectors. The vectors are then fed to a three-layer multi-layer perceptron (MLP) network to make
the final classification decision. Our method can reach 94.4% accuracy in the experiments.

NL Instructions for Policy Learning. The neural network classifier maps a real-time NL instruction
ins to action ah in the agent’s action space. We consider the new action command from the human
coach ah has the highest priority so that it can overwrite the agent’s sampled action generated from
the agent’s policy. In Algorithm 1, at each interaction loop, if a piece of instruction ins comes,
the agent replaces the sampled action a with ah for td seconds. The idea of replacing the agent’s
actions with ah intuitively works with RL because the human coach’s policy, once executed, would
be reinforced if it leads to higher rewards.
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When using the original PPO [28] as the direct policy learner, one issue arises that after the sampled
actions are replaced with ah, the ratio η(θ) becomes πθ(ah|st)

πθold (ah|st)
. Note that NL instruction ah is not

sampled from the agent’s policy. Thus, it may drastically change the agent’s policy (if the human
trainer’s policy deviates far from the agent’s policy) and the policy may not be able to converge. We
propose to modify PPO’s regularization by changing the clipping function. Our solution is to clip the
old probability by a fix number: η(θ) = πθ(ah|st)

max{πθold (ah|st),0.05}
. Empirically. we find it helpful to clip

the old probability to be larger than 0.05.

NL Instructions for Model Learning. Our reward function r is designed similarly to [31]’s and
based on three factors: speed, deviation, and orientation. For a non-terminal state, the reward function
is defined as the multiplication of all three factors. For a terminal stats, it uses a penalty score rT :

r =

{
log exp

∑
βiri Non-terminal states

rT Terminal states
, (1)

where ri is one of rs, ro, rd and βi is the weights to each reward component. The speed factor rs is a
function of the car speed s : rs(s) = 1{0≤s<smin}× s

smin
+1{smin≤s<starget}+1{starget≤s<+∞}×

(1− s−starget
smax−starget ), where smin = 10km/h, starget = 15km/h, smax = 20km/h. The deviation

factor rd is a function of the distance d between the center of the car and the center of the road:
rd(d) = max{1 − d

dmax
, 0}, where dmax = 2.5m. The orientation factor ro is a function of the

angle a between the orientation of the car and the orientation of the road: ro(a) = max{1− a
amax

, 0},
where amax = 20◦. The self-driving car reaches a terminal state if it drives off track (rT = −50) or
collides with any other object (rT = −100) or stops moving for a period of time (rT = 0).

The NL voice reward rh gives evaluative feedback to the agent. After receiving it, we use rh to
update a previous state’s reward function instead of the current state’s. This is because of the latency
of proceeding with the human voice input in real-time. According the frame rate fps and pre-set
latency lat, we find the previous state st−g based on the time gap g = t− lat

fps between the current
state st and st−g. We then use supervised regression to learn the reward parameters at t − g that
minimize the cost to rth at t :

β∗t−g = argmin
β

∑
||rt−g, rth||. (2)

The newly learned reward function would then be used to update the time steps forward until updated
by another human input.

5 Experimental Results

We evaluate our method on the CARLA simulator [9], a popular open-source simulator for au-
tonomous driving cars. The tasks we experiment on include Lane following, red lights and stop
signs, full lap, and avoidance. We test in both situations, with or without other vehicles running
and pedestrians walking in the street. The map of Town02 is used, with random weather conditions
initiated. We limit the frame rate to 10 per second and use the asynchronous model.

5.1 Experimental Setup

Metrics. The following metrics are used in the evaluation. 1) The cumulative reward G(π) of each
episode: G(π) =

∑T
k=1 γ

kR(sk, π(sk)) 2) The success rate out of 100 times for each task. Finishing
a whole episode without driving out of the lane is considered a success in the lane following task.
Finishing a whole episode without crashing into other vehicles or pedestrians is considered a success
in the avoidance task. The final success rate SuccessRate = #of successful episodes

100 . 3) The completion
percentage: P = Lengthc

Length × 100%, where Length is the total length of the testing lap and Lengthc
is the length of the lap a car agent goes through before the episode terminates. 4) Lane Deviation:
Lane deviation is the distance in meters between the car and the center of the driving lane. It measures
the self-driving car’s ability to stay in its lane.

Baselines. To show the effectiveness of our method, we compare with several best-performing
model-free RL methods such as DQN [23], PPO [31], SAC [13] and model-based RL baseline
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Table 2: Effectiveness in tasks without other vehicles and pedestrians. The full lap task tests if an
agent can drive stably and complete a lap.

Lane following Full Lap
Success rate Laps Completed Cum. Rw Avg Dev.

DQN [23] 17 13.61 (std 6.96) 81.19 (47.13) 1.01 (0.24)
SAC [13] 57 15.91 (8.05) 90.72 (84.10) 0.84 (0.17)
DA-RB+ [27] 45 1.98 (0.94) 6.32 (3.28) 13.65 (5.25)
DDQ [12] 55 26.29 (5.40) 181.61 (55.78) 1.1 (1.02)
Dyna-PPO [31, 29] 60 18.65 (6.89) 272.87 (131.68) 0.5 (0.07)
Dyna-PPO+NLI (this paper) 100 42.95 (10.24) 635.96 (170.89) 0.4 (0.03)
Deep COACH [4] 21 21.22 (5.30) 82.09 (14.32) 0.61 (0.03)

Table 3: Effectiveness in tasks with vehicles and pedestrians. The avoidance task tests whether the
agent can correctly avoid crashing into other vehicles and pedestrians and simultaneously follow the
lane.

Avoidance Full Lap (Avoidance)
Success rate Laps Completed Cum. Rw Avg Dev.

DQN [23] 7 3.61 (std 5.77) 65.63 (107.20) 0.373 (0.158)
SAC [13] 40 12.71 (8.45) 142.31 (100.10) 0.8 (0.24)
DA-RB+ [27] 27 0.89 (2.67) -7.94 (6.16) 32.66 (9.49)
DDQ [12] 40 17.49 (8.79) 121.22 (57.00) 1.01 (0.77)
Dyna-PPO [31, 29] 57 16.85 (8.52) 266.80 (163.10) 0.71 (0.20)
Dyna-PPO+NLI (this paper) 73 18.88 (6.40) 296.55 (113.65) 0.64 (0.14)
Deep COACH [4] 13 6.41 (4.94) 30.84 (61.33) 0.75 (0.18)

methods such as Dyna (with PPO) and DDQ [12]. DA-RB+ [27] is the SOTA for CARLA at the
moment, and it is an imitation learning method. We report our implementation of it here. In addition,
we compare with a human-in-the-loop learning method, Deep COACH [4]. These methods share
the same training experiences and use similar convolutional neural network architectures for image
feature extraction.

Implementation Details. We implement the above algorithms in Tensorflow and CARLA 0.9.10.
We use a five-layer residual CNN to process the image input, and the input size is 160× 80 RGB.
After five convolution layers, the network receives the speed v and combines it with CNN’s output.
After another two dense layers, it returns the final result. The action sample rate is 10HZ, which
means that each interaction step takes 0.1 seconds.

5.2 Effectiveness

We compare the proposed algorithms with state-of-the-art self-driving car systems in different fields
such as model-based learning, model-free learning, and human-in-the-loop learning. The results
are summarized in Table 2 and Table 3. Table 2 shows the performance of AV agents without the
presence of other vehicles and pedestrians. Our method outperforms the baselines and reaches a 100%
successful rate in lane following task, while the best result of other models is 57%. Our agent drives
63% further in the full lap task than others and consequently reaches a higher cumulative reward.
Also, we have the lowest average deviation of 0.4, which means our agent drives more stable than the
baselines. The baseline agents continuously change their steer angles; eventually, they cannot find
that the best solution is to hold the steer and drive straight. With natural language guidance, we can
inform the agent to go straight, which leads to a higher cumulative reward. The agent learns not to
change steer too frequently and achieves lower deviation.

Table 3 shows the performance when pedestrians and other vehicles are present. All methods have
reduced performance compared with Table 2. It is reasonable because the pedestrians can suddenly
walk across the street, and other vehicles may overtake the agent and cut the lane. They add many
unpredictable factors to the environment. As human drivers, we are taught to stop when facing these
situations. However, the self-driving car agent cannot learn this insight quickly. We observe that most
baseline methods take a sharp turn to avoid the pedestrians and then lose control. We can ask the
agent to stop in front of pedestrians and vehicles during training with natural language instructions.
Thus, our runs show better performance than the baselines.
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Figure 4: Learning curves comparison in different metrics.

5.3 Effects of using NL Voice Instructions

To show the effects of using NLI, we experiment on the full lap task. We plot the performance of the
two models. One model is trained with NLI, and the other is not. The two models share the same
hyper-parameter setting and training and test environments. Figure 4 shows the learning curves over
six different metrics. In each training epoch, both models sample three trajectories for a round of
gradient updates. The total training time is less than one hour for both models. We start coaching the
model at the fifteenth epochs, after which we can see Dyna-PPO+NLI’s performance boosts, showing
the effectiveness of NLI. The testing videos 2 of the AV agent record the self-driving car smoothly
turns with a handful of training episodes using NLI. The two models’ behaviors at the turning point
lead to the performance difference. The lap completion rate of the Dyna-PPO agent does not increase
after the fifteenth epoch because it never successfully turns. The whole turning process takes about
30 to 60 successive steps, making it difficult for a random exploration strategy to find the correct
actions in all steps. However, this is not the case for Dyna-PPO+NLI. A human expert can talk to the
agent about the correct steps. The agent then reinforces this skill because it leads to a higher expected
return. This shows that the RL agent’s random exploration strategy can fail or take too long to learn
an optimal policy, but utilizing human expertise for searching optimal policy and teaching the agent
during the training may help.

6 Conclusion

This paper proposes to use natural language instructions to help model-based RL when training
autonomous driving cars. First, we collect voice instructions offline and build a training dataset and
a taxonomy of NLIs. The data analysis shows that most natural language instructions are indeed
about actions and rewards for the agent. Second, we build a model-based DRL framework that can
incorporate live human voice instructions. Our method can allow both machine learning engineers
and everyday end-users to 1) provide feedback to shape the reward function for various driving
behaviors and 2) directly instruct the car agent to act. Experiment results show the effectiveness of
our method. In the future, we plan to further improve the processing speed of speech-to-text and
text classification due to the live nature of our work. Moreover, for the actual deployment of the
system, we must have a careful plan to handle real-time speech data in a privacy-preserving manner.
Currently, speech recognition is done “in the cloud” and relies on an IT company’s service. This can
be improved when we develop highly effective in-house speech recognition tools. This work presents
a more natural way for AI agents to be trained through a human-friendly communication channel and
contributes to the bigger picture of human-robot cooperation.

2https://youtu.be/JXU4o7CkttM.
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